
OpenCV Performance Measurements on Mobile Devices

Marco A. Hudelist
Klagenfurt University, ITEC

Universitätsstraße 65-67
9020 Klagenfurt, Austria
marco@itec.aau.at

Claudiu Cobârzan
Klagenfurt University, ITEC

Universitätsstraße 65-67
9020 Klagenfurt, Austria
claudiu@itec.aau.at

Klaus Schoeffmann
Klagenfurt University, ITEC

Universitätsstraße 65-67
9020 Klagenfurt, Austria

ks@itec.aau.at

ABSTRACT
Mobile devices like smartphones and tablets are becoming
increasingly capable in terms of processing power. Although
they are already used in computer vision, no comparable
measurement experiments of the popular OpenCV frame-
work have been made yet. We try to fill this gap by eval-
uating the performance of a set of typical OpenCV opera-
tions, on mobile devices like the iPad Air and iPhone 5S. We
compare those results with the performance of a consumer
grade laptop PC (MacBook Pro). Our tests span from sim-
ple image manipulation methods to keypoint detection and
descriptor extraction as well as descriptor matching. Results
show that the top performing device can match the perfor-
mance of the PC up to 80 percent in specific operations.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness)

General Terms
Measurement, Experimentation, Performance

Keywords
Mobile devices, OpenCV, performance evaluation

1. INTRODUCTION
Mobile devices like smartphones and tablets are a popu-

lar replacement for point-and-shoot cameras, music players
and to some degree even traditional laptops and desktop
PCs. At the same time they remain lightweight, offer sim-
pler user interfaces and provide in some cases impressive pro-
cessing power when compared to classical computers. Over
the last years such devices experienced big improvements
also in terms of battery life. Multi-core CPUs and GPUs
have been introduced and the latest installment of Apple’s
iPhones and iPads even provide 64-Bit computing architec-
tures. Since they have the ability to become the primary

To appear in Proc. ICMR 2014, April 1-4, 2014,
Glasgow, Scotland, UK c©ACM 2014

computing device for the majority of consumers, it makes
sense to expand the research of computer vision to such de-
vices. For tasks of type “known item search” within picture
or video archives, the focus is still on desktop solutions [10],
but there are approaches which employ collaborative brows-
ing on mobile devices [5]. For such solutions, performing
feature extraction directly on the device might prove ben-
eficial. The OpenCV framework [1] is a very popular tool
in this field and is available for various mobile platforms.
In spite of the fact that various device performance bench-
mark results are available, none of those specifically target
the needs of computer vision applications and research. This
work aims at providing the computer vision community with
a first set of performance measurements of popular OpenCV
operations on tablets and smartphones. We have used for
our tests different generations of iPad and iPhone devices
and contrasted the results with those obtained for the same
set of operations on a typical consumer grade laptop PC
(MacBook Pro). By doing this we aim at providing a helpful
and substantiated reference for choosing appropriate parings
of type device - OpenCV operation.

In the following we lay out the details of our experiment
including the datasets used and the exact procedure with
emphasis on the different phases of the measurements. The
results are presented, discussed and recommendations con-
cerning the use of OpenCV operations on mobile devices are
given.

To the best of our knowledge there are no other works
dealing with similar performance measurements of OpenCV
operations on mobile devices.

2. MEASUREMENT SETUP AND RESULTS
We group the tested OpenCV operations into three mea-

surement phases. In the first phase we test typical opera-
tions used in the computer vision area like blurring an image
using Gaussian blur, detecting faces and detecting edges. In
the next phase we group functions calls to common keypoint
detection and descriptor extraction operations like SIFT [7]
and SURF [3]. The last phase groups operations that match
already extracted descriptors of two subsequently frames of
a video.

For the measurements of the first two phases we use a
dataset consisting of 5000 images1. The images are ran-
domly drawn from the freely available MIRFLICKR25000
dataset2.

1The file list is the one at http://ngvb.net/?page_id=158
2The MIRFLICKR2500 image dataset is available
at http://press.liacs.nl/mirflickr



The images differ in resolution and have an average of
463 horizontal and 397 vertical pixels. Each function call
is tested with each of these images five times in a row and
the measured times are averaged. This is done in order to
even out measurement differences caused by unpredictable
interventions of the OS. The averaged performance times for
each image are again averaged to get an overall performance
measure for each specific OpenCV function.

The last phase which concentrates on descriptor matching
uses a different dataset than the phases before. We extract
the first 5000 frames of the test video 031 3 of the Video
Browser Showdown 2013 [10] - a recording of a dutch news
journal. The video is encoded in H.264 with an average
bitrate of 619.7 kBit/s and a resolution of 640 x 360 pix-
els. The tested matching approaches differ in terms of the
used descriptors but all use the same brute force matcher
(BFMatcher) that is part of the OpenCV framework. In
this phase, only the actual matching process is measured,
not the keypoint detection and descriptor extraction. Each
matching approach has to find matches between two sub-
sequently frames, starting with the first and second frame
of the video, continuing with the second and third frame,
etc. This continues until the last pair of the 5000 frames.
Each matching process of a frame pair is repeated five times
and the measured times are averaged. The averaged times
of all frame matches are again averaged to get the overall
measurement for each matching approach.

We use different generations of Apple’s iPads and iPhones
as hardware, including their latest and fastest versions, the
iPad Air and the iPhone 5S. As ground truth, we also eval-
uate the performance of a MacBook Pro 13” with Retina
Display (late 2012 version) with an Intel Core i5 at 2.5
GHz, 8 GB of RAM and integrated Intel HD Graphics 4000.
For a comparison of the specifications of the devices please
see Table 1. On all of the mobile devices we use the lat-
est available OS version iOS 7.0.4. The MacBook Pro uses
Mac OS X 10.8 Mountain Lion. Further, version 2.4.7 of the
OpenCV framework is used on all devices.

Table 1: Specification breakdown
Device CPU CPU CPU

Clock Cores Architecture
MBP 13” (2012) 2.5 GHz 2 64 Bit
iPad Air 1.4 GHz 2 64 Bit
iPad 4 1.4 GHz 2 32 Bit
iPad 3 1 GHz 2 32 Bit
iPad Mini 1 1 GHz 2 32 Bit
iPad 2 1 GHz 2 32 Bit
iPhone 5S 1.3 GHz 2 64 Bit
iPhone 5 1.3 GHz 2 32 Bit
iPhone 4s 800 MHz 2 32 Bit

It has to be noted that we did not use in any of our
measurements neither custom parallelization nor GPU sup-
ported calls. The values therefore indicate only the perfor-
mance on a single core of the devices’ CPUs.

2.1 Common OpenCV Operations
In this testing phase we evaluate how long it takes to:

3http://www.videobrowsershowdown.org

• Grayscale an image

• Blur an image with Gaussian Blur

• Detect faces in an image

• Calculate the RGB and HSV histograms

• Detect edges using Canny edge detection

For the Gaussian blur we use the OpenCV GaussianBlur-
function with a kernel size of 21 x 21 and a sigma of 8.0
to produce recognizable blurred result images. The face
detection is realized by using a trained cascade classifier
and its detectMultiScale function. Images are converted to
grayscale before the actual detection takes place. We use a
scaleFactor of 1.1, minNeighbors of 2 and a minimum size of
30 x 30. The RGB histograms are calculated with a size of
256 bins, a range from 0 to 256 and uniform set to true and
accumulate set to false. The HSV histograms are calculated
with 30 hue levels and 32 saturation levels with the stan-
dard ranges. The default values for uniformity (true) and
accumulation (false) are used. For the edge detection using
the Canny algorithm we first grayscale the image and blur
it with a kernel size of 5 x 5 and a sigma of 1.2. We then
measure the Canny function of OpenCV with thresholds one
and two set to 0 and 50 respectively. For a breakdown of
the measurement see Table 2.

2.2 Keypoint Detection and Descriptor Extrac-
tion

For the keypoint detection and descriptor extraction part,
we evaluate several popular algorithms that come built-in
in the OpenCV framework. The measurements results of
Table 3 include the time needed to detect keypoints as well
as to extract descriptors based on the detected keypoints.
The algorithms that we evaluate in this block are ORB [9],
BRIEF [4], BRISK [6], SIFT, SURF, FREAK [2], FAST
[8]. In case of BRIEF and FREAK we pare the descriptor
extraction with the GoodFeaturesToTrack algorithm [11] to
detect keypoints. For a breakdown of all measures please
see Table 3.

2.3 Descriptor Matching
In the matching part we evaluate the performance of SIFT,

SURF, BRISK and BRIEF descriptors regarding how fast
they can be matched for two successive frames of a video.
For each of the frames the preceding process of keypoint
detection and descriptor extraction is not part of the mea-
surement. For the actual matching we use the brute force
matcher (BFMatcher) that comes with the OpenCV frame-
work. For a breakdown of all matching results please see
Table 4.

3. DISCUSSION
It is clear that even high end mobile devices still do not

match the processing power of typical consumer grade PCs.
Nevertheless, their performance is promising and can be suf-
ficient for certain kinds of applications. Especially the latest
edition tablets and smartphones (iPad Air and iPhone 5S)
showed that they could match the power of the PC up to 60
percent for certain scenarios concerning face detection and
up to 80 percent in terms of grayscaling images, as can be
seen in Figure 1. Generation of HSV histograms and Canny



Table 2: Common Operations (values in ms)
Device Grayscale Gaussian Face RGB HSV Canny Edge

Blur Detection Hist. Hist. Detection
MBP 13” (2012) 0.26 3.97 134.27 0.40 0.30 3.10
iPad Air 0.32 42.31 214.10 2.48 0.89 9.34
iPad 4 0.58 80.66 282.30 2.47 1.26 15.49
iPad 3 1.18 153.64 502.37 2.88 3.10 26.22
iPad Mini 1 1.17 151.19 505.66 2.94 3.17 26.14
iPad 2 1.15 153.30 500.07 2.91 3.14 26.11
iPhone 4s 1.30 190.00 620.62 3.55 3.84 32.10
iPhone 5 0.61 86.32 296.73 2.63 1.35 16.39
iPhone 5S 0.34 45.28 235.56 2.49 0.92 9.73

Table 3: Keypoint detection and descriptor extraction (values in ms)
Device ORB BRISK FREAK FAST BRIEF SIFT SURF
MBP 13” (2012) 10.73 248.14 17.04 1.07 1.87 172.71 341.32
iPad Air 52.37 775.70 46.49 7.72 3.64 877.09 805.50
iPad 4 80.30 1167.24 84.48 15.03 6.89 1378.78 842.3.0
iPad 3 162.99 2155.05 184.84 24.74 17.32 3518.18 1606.63
iPad Mini 1 162.96 2156.24 185.66 24.86 17.63 3586.21 1627.40
iPad 2 162.23 2150.66 184.24 24.70 17.20 3515.13 1599.75
iPhone 4s 200.54 2673.05 222.74 30.59 20.77 4320.10 1980.38
iPhone 5 84.41 1232.42 89.92 16.11 7.42 1474.19 804.29
iPhone 5S 55.15 829.54 49.04 8.22 3.76 1028.17 1024.97

Table 4: Frame matching (values in ms)
Device SIFT SURF BRISK BRIEF
MBP 13” (2012) 51.98 33.98 2.11 15.69
iPad Air 254.24 163.93 3.23 23.63
iPad 4 394.12 204.11 6.68 37.78
iPad 3 1671.09 746.41 14.38 76.103
iPad Mini 1 1643.27 756.31 14.47 76.08
iPad 2 1610.51 744.96 14.72 75.89
iPhone 4s 1888.81 918.46 17.94 94.405
iPhone 5 421.38 243.62 8.43 40.46
iPhone 5S 390.00 223.53 3.74 32.52

edge detection could be performed with about 30 percent of
the processing performance of a traditional PC.

In terms of keypoint detection and descriptor extraction,
the top devices could provide up to 50 percent the perfor-
mance of the traditional PC in case of BRIEF and up to 40
percent in case of SURF (see Figure 2).

Descriptor matching showed a rather good performance
of the iPad Air and iPhone 5S with BRISK and BRIEF de-
scriptors. The devices are able to provide about 65 percent
of the performance of a normal PC (see Figure 3). In case
of matching SIFT and SURF descriptors, the results are not
that good with only 20 percent of performance of a tradi-
tional PC.

Another interesting result is that the iPad 3 is slightly
outmatched by its predecessor, the iPad 2 in every measure-
ment. We expect this has to do with the fact, that the iPad
3 was the first iPad with a Retina Display. It has to process
four times the pixel amount of the predecessor, which likely
causes the performance boost of the newer processor to be
eaten up.

Figure 1: Top results of common operations.

4. CONCLUSION
In this paper we showed results for performance measure-

ments of common OpenCV functions executed on mobile de-
vices. Our measurements were grouped into common oper-
ations, keypoint detection and descriptor extraction as well
as descriptor matching. We could show that certain oper-
ations were only two to three times slower on the top per-
forming device compared to a typical consumer grade laptop



Figure 2: Top results of keypoint detection and de-
scriptor extraction.

computer. In future work we would like to expand our mea-
surements in terms of tested operations as well as in terms
of tested hardware. Additionally to iPads and iPhones we
would like to add popular Android and Windows tablets and
smartphones. Further, we want to explore the parallel and
GPU supported computation possibilities that are available
on the devices and in the OpenCV framework and compare
their performaces to those of the CPU only versions.

5. ACKNOWLEDGMENTS
This work was funded by the Federal Ministry for Trans-

port, Innovation and Technology (bmvit) and the Austrian
Science Fund (FWF): TRP 273-N15 and the European Re-
gional Development Fund and the Carinthian Economic Pro-
motion Fund (KWF), supported by Lakeside Labs GmbH,
Klagenfurt, Austria.

6. REFERENCES
[1] http://www.opencv.org (last visited 27.11.2013).

[2] A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast
retina keypoint. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages
510–517, 2012.

[3] H. Bay, T. Tuytelaars, and L. Gool. Surf: Speeded up
robust features. In A. Leonardis, H. Bischof, and
A. Pinz, editors, Computer Vision - ECCV 2006,
volume 3951 of Lecture Notes in Computer Science,
pages 404–417. Springer Berlin Heidelberg, 2006.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua.
Brief: Binary robust independent elementary features.
In K. Daniilidis, P. Maragos, and N. Paragios, editors,
Computer Vision - ECCV 2010, volume 6314 of
Lecture Notes in Computer Science, pages 778–792.
Springer Berlin Heidelberg, 2010.

Figure 3: Results of the matching measurements.

[5] C. Cobârzan, M. A. Hudelist, and M. Del Fabro.
Content-based video browsing with collaborating
mobile clients. In C. G. et al., editor, 20th
Anniversary International Conference on MultiMedia,
Part II - MMM 2014, volume 8326 of Lecture Notes in
Computer Science, pages 402–406. 2014.

[6] S. Leutenegger, M. Chli, and R. Siegwart. Brisk:
Binary robust invariant scalable keypoints. In IEEE
International Conference on Computer Vision
(ICCV), pages 2548–2555, 2011.

[7] D. Lowe. Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

[8] E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In A. s. Leonardis,
H. Bischof, and A. Pinz, editors, Computer Vision -
ECCV 2006, volume 3951 of Lecture Notes in
Computer Science, pages 430–443. Springer Berlin
Heidelberg, 2006.

[9] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski.
Orb: An efficient alternative to sift or surf. In IEEE
International Conference on Computer Vision
(ICCV), pages 2564–2571, 2011.

[10] K. Schoeffmann, D. Ahlström, W. Bailer,
C. Cobârzan, F. Hopfgartner, K. McGuinness,
C. Gurrin, C. Frisson, D.-D. Le, M. Del Fabro, H. Bai,
and W. Weiss. The video browser showdown: A live
evaluation of interactive video search tools.
International Journal of Multimedia Information
Retrieval, 2014. accepted on Dec. 4, 2013.

[11] J. Shi and C. Tomasi. Good features to track. In IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, pages 593–600, 1994.


